Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
1.
medRxiv ; 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38464255

RESUMEN

Introduction: Autoimmune diseases are heterogeneous and often lack specific or sensitive diagnostic tests. Increased percentages of CD4+CXCR5+PD1+ circulating T follicular helper (cTfh) cells and skewed distributions of cTfh subtypes have been associated with autoimmunity. However, cTfh cell percentages can normalize with immunomodulatory treatment despite persistent disease activity, indicating the need for identifying additional cellular and/or serologic features correlating with autoimmunity. Methods: The cohort included 50 controls and 56 patients with autoimmune cytopenias, gastrointestinal, pulmonary, and/or neurologic autoimmune disease. Flow cytometry was used to measure CD4+CXCR5+ T cell subsets expressing the chemokine receptors CXCR3 and/or CCR6: CXCR3+CCR6- Type 1, CXCR3-CCR6- Type 2, CXCR3+CCR6+ Type 1/17, and CXCR3- CCR6+ Type 17 T cells. IgG and IgA autoantibodies were quantified using a microarray featuring 1616 full-length, conformationally intact protein antigens. The 97.5th percentile in the control cohort defined normal limits for T cell subset percentages and total number (burden) of autoantibodies. Results: This study focused on CD4+CXCR5+ T cells because CXCR5 upregulation occurs after cognate T-B cell interactions characteristic of autoimmune diseases. We refer to these cells as circulating T follicular memory (cTfm) cells to acknowledge the dynamic nature of antigen-experienced CXCR5+ T cells, which encompass progenitors of cTfh or Tfh cells as well as early effector memory T cells that have not yet lost CXCR5. Compared to controls, 57.1% of patients had increased CXCR5+CXCR3+CCR6+ cTfm1/17 and 25% had increased CXCR5+CXCR3-CCR6+ cTfm17 cell percentages. Patients had significantly more diverse IgG and IgA autoantibodies than controls and 44.6% had an increased burden of autoantibodies of either isotype. Unsupervised autoantibody clustering identified three clusters of patients with IgG autoantibody profiles distinct from those of controls, enriched for patients with active autoimmunity and monogenic diseases. An increased percentage of cTfm17 cells was most closely associated with an increased burden of high-titer IgG and IgA autoantibodies. A composite measure integrating increased cTfm1/17, cTfm17, and high-titer IgG and/or IgA autoantibodies had 91.1% sensitivity and 90.9% specificity for identifying patients with autoimmunity. Percentages of cTfm1/17 and cTfm17 percentages and numbers of high-titer autoantibodies in patients receiving immunomodulatory treatment did not differ from those in untreated patients, thus suggesting that measurements of cTfm can complement measurements of other cellular markers affected by treatment. Conclusions: This study highlights two new approaches for assessing autoimmunity: measuring CD4+CXCR5+ cTfm subsets as well as total burden of autoantibodies. Our findings suggest that these approaches are particularly relevant to patients with rare autoimmune disorders for whom target antigens and prognosis are often unknown.

2.
Arthritis Rheumatol ; 76(2): 285-292, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-37610270

RESUMEN

OBJECTIVE: Kawasaki disease (KD) is a systemic vasculitis of young children that can lead to development of coronary artery aneurysms. We aimed to identify diagnostic markers to distinguish KD from other pediatric inflammatory diseases. METHODS: We used the proximity extension assay to profile proinflammatory mediators in plasma samples from healthy pediatric controls (n = 30), febrile controls (n = 26), and patients with KD (n = 23), multisystem inflammatory syndrome in children (MIS-C; n = 25), macrophage activation syndrome (n = 13), systemic and nonsystemic juvenile idiopathic arthritis (n = 14 and n = 10, respectively), and juvenile dermatomyositis (n = 9). We validated the key findings using serum samples from additional patients with KD (n = 37) and febrile controls (n = 28). RESULTS: High-fidelity proteomic profiling revealed distinct patterns of cytokine and chemokine expression across pediatric inflammatory diseases. Although KD and MIS-C exhibited many similarities, KD differed from MIS-C and other febrile diseases in that most patients exhibited elevation in one or more members of the interleukin-17 (IL-17) cytokine family, IL-17A, IL-17C, and IL-17F. IL-17A was particularly sensitive and specific, discriminating KD from febrile controls with an area under the receiver operator characteristic curve of 0.95 (95% confidence interval 0.89-1.00) in the derivation set and 0.91 (0.85-0.98) in the validation set. Elevation of all three IL-17-family cytokines was observed in over 50% of KD patients, including 19 of 20 with coronary artery aneurysms, but was rare in all other comparator groups. CONCLUSION: Elevation of IL-17 family cytokines is a hallmark of KD and may help distinguish KD from its clinical mimics.


Asunto(s)
COVID-19/complicaciones , Aneurisma Coronario , Síndrome Mucocutáneo Linfonodular , Síndrome de Respuesta Inflamatoria Sistémica , Niño , Humanos , Preescolar , Interleucina-17 , Citocinas , Síndrome Mucocutáneo Linfonodular/diagnóstico , Proteómica , Fiebre
3.
ACR Open Rheumatol ; 5(10): 556-562, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37688362

RESUMEN

OBJECTIVE: Lung disease (LD) is an increasingly recognized complication of systemic juvenile idiopathic arthritis (sJIA). As there are no currently available guidelines for pulmonary screening in sJIA, we sought to develop such an algorithm at our institution. METHODS: A multidisciplinary workgroup was convened, including members representing rheumatology, pulmonary, stem cell transplantation, and patient families. The workgroup leaders drafted an initial algorithm based on published literature and experience at our center. A modified Delphi approach was used to achieve agreement through three rounds of anonymous, asynchronous voting and a consensus meeting. Statements approved by the workgroup were rated as appropriate with moderate or high levels of consensus. These statements were organized into the final approved screening algorithm for LD in sJIA. RESULTS: The workgroup ultimately rated 20 statements as appropriate with a moderate or high level of consensus. The approved algorithm recommends pulmonary screening for newly diagnosed patients with sJIA with clinical features that the workgroup agreed may confer increased risk for LD. These "red flag features" include baseline characteristics (young age of sJIA onset, human leukocyte antigen type, trisomy 21), high disease activity (macrophage activation syndrome [MAS], sJIA-related ICU admission, elevated MAS biomarkers), respiratory symptoms or abnormal pulmonary examination findings, and features of drug hypersensitivity-like reactions (eosinophilia, atypical rash, anaphylaxis). The workgroup achieved consensus on the recommended pulmonary work-up and monitoring guidelines. CONCLUSION: We developed a pulmonary screening algorithm for sJIA-LD through a multidisciplinary consensus-building process, which will be revised as our understanding of sJIA-LD continues to evolve.

4.
J Virol ; 97(10): e0056323, 2023 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-37754763

RESUMEN

IMPORTANCE: Human cytomegalovirus (HCMV) requires inactivation of AKT to efficiently replicate, yet how AKT is shut off during HCMV infection has remained unclear. We show that UL38, an HCMV protein that activates mTORC1, is necessary and sufficient to destabilize insulin receptor substrate 1 (IRS1), a model insulin receptor substrate (IRS) protein. Degradation of IRS proteins in settings of excessive mTORC1 activity is an important mechanism for insulin resistance. When IRS proteins are destabilized, PI3K cannot be recruited to growth factor receptor complexes, and hence, AKT membrane recruitment, a rate limiting step in its activation, fails to occur. Despite its penchant for remodeling host cell signaling pathways, our results reveal that HCMV relies upon a cell-intrinsic negative regulatory feedback loop to inactivate AKT. Given that pharmacological inhibition of PI3K/AKT potently induces HCMV reactivation from latency, our findings also imply that the expression of UL38 activity must be tightly regulated within latently infected cells to avoid spontaneous reactivation.


Asunto(s)
Citomegalovirus , Proteínas Sustrato del Receptor de Insulina , Proteínas Proto-Oncogénicas c-akt , Humanos , Citomegalovirus/fisiología , Proteínas Sustrato del Receptor de Insulina/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-akt/metabolismo , Estabilidad Proteica , Proteolisis , Resistencia a la Insulina , Retroalimentación Fisiológica , Activación Viral , Latencia del Virus
5.
J Clin Invest ; 133(22)2023 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-37751296

RESUMEN

BACKGROUNDMacrophage activation syndrome (MAS) is a life-threatening complication of Still's disease (SD) characterized by overt immune cell activation and cytokine storm. We aimed to further understand the immunologic landscape of SD and MAS.METHODWe profiled PBMCs from people in a healthy control group and patients with SD with or without MAS using bulk RNA-Seq and single-cell RNA-Seq (scRNA-Seq). We validated and expanded the findings by mass cytometry, flow cytometry, and in vitro studies.RESULTSBulk RNA-Seq of PBMCs from patients with SD-associated MAS revealed strong expression of genes associated with type I interferon (IFN-I) signaling and cell proliferation, in addition to the expected IFN-γ signal, compared with people in the healthy control group and patients with SD without MAS. scRNA-Seq analysis of more than 65,000 total PBMCs confirmed IFN-I and IFN-γ signatures and localized the cell proliferation signature to cycling CD38+HLA-DR+ cells within CD4+ T cell, CD8+ T cell, and NK cell populations. CD38+HLA-DR+ lymphocytes exhibited prominent IFN-γ production, glycolysis, and mTOR signaling. Cell-cell interaction modeling suggested a network linking CD38+HLA-DR+ lymphocytes with monocytes through IFN-γ signaling. Notably, the expansion of CD38+HLA-DR+ lymphocytes in MAS was greater than in other systemic inflammatory conditions in children. In vitro stimulation of PBMCs demonstrated that IFN-I and IL-15 - both elevated in MAS patients - synergistically augmented the generation of CD38+HLA-DR+ lymphocytes, while Janus kinase inhibition mitigated this response.CONCLUSIONMAS associated with SD is characterized by overproduction of IFN-I, which may act in synergy with IL-15 to generate CD38+HLA-DR+ cycling lymphocytes that produce IFN-γ.


Asunto(s)
Interferón Tipo I , Síndrome de Activación Macrofágica , Niño , Humanos , Interleucina-15 , Síndrome de Activación Macrofágica/genética , Antígenos HLA-DR , Linfocitos T CD8-positivos , Anticuerpos , Interferón Tipo I/genética
6.
Blood ; 142(15): 1281-1296, 2023 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-37478401

RESUMEN

Wiskott-Aldrich syndrome (WAS) is a rare X-linked disorder characterized by combined immunodeficiency, eczema, microthrombocytopenia, autoimmunity, and lymphoid malignancies. Gene therapy (GT) to modify autologous CD34+ cells is an emerging alternative treatment with advantages over standard allogeneic hematopoietic stem cell transplantation for patients who lack well-matched donors, avoiding graft-versus-host-disease. We report the outcomes of a phase 1/2 clinical trial in which 5 patients with severe WAS underwent GT using a self-inactivating lentiviral vector expressing the human WAS complementary DNA under the control of a 1.6-kB fragment of the autologous promoter after busulfan and fludarabine conditioning. All patients were alive and well with sustained multilineage vector gene marking (median follow-up: 7.6 years). Clinical improvement of eczema, infections, and bleeding diathesis was universal. Immune function was consistently improved despite subphysiologic levels of transgenic WAS protein expression. Improvements in platelet count and cytoskeletal function in myeloid cells were most prominent in patients with high vector copy number in the transduced product. Two patients with a history of autoimmunity had flares of autoimmunity after GT, despite similar percentages of WAS protein-expressing cells and gene marking to those without autoimmunity. Patients with flares of autoimmunity demonstrated poor numerical recovery of T cells and regulatory T cells (Tregs), interleukin-10-producing regulatory B cells (Bregs), and transitional B cells. Thus, recovery of the Breg compartment, along with Tregs appears to be protective against development of autoimmunity after GT. These results indicate that clinical and laboratory manifestations of WAS are improved with GT with an acceptable safety profile. This trial is registered at clinicaltrials.gov as #NCT01410825.


Asunto(s)
Eccema , Trasplante de Células Madre Hematopoyéticas , Síndrome de Wiskott-Aldrich , Humanos , Síndrome de Wiskott-Aldrich/genética , Síndrome de Wiskott-Aldrich/terapia , Proteína del Síndrome de Wiskott-Aldrich/genética , Células Madre Hematopoyéticas/metabolismo , Trasplante de Células Madre Hematopoyéticas/efectos adversos , Terapia Genética/métodos , Eccema/etiología , Eccema/metabolismo , Eccema/terapia
7.
Arthritis Rheumatol ; 75(10): 1714-1732, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37486733

RESUMEN

OBJECTIVE: Haemophagocytic lymphohistiocytosis (HLH) and macrophage activation syndrome (MAS) are life-threatening systemic hyperinflammatory syndromes that can develop in most inflammatory contexts. They can progress rapidly, and early identification and management are critical for preventing organ failure and mortality. This effort aimed to develop evidence-based and consensus-based points to consider to assist clinicians in optimising decision-making in the early stages of diagnosis, treatment and monitoring of HLH/MAS. METHODS: A multinational, multidisciplinary task force of physician experts, including adult and paediatric rheumatologists, haematologist/oncologists, immunologists, infectious disease specialists, intensivists, allied healthcare professionals and patients/parents, formulated relevant research questions and conducted a systematic literature review (SLR). Delphi methodology, informed by SLR results and questionnaires of experts, was used to generate statements aimed at assisting early decision-making and optimising the initial care of patients with HLH/MAS. RESULTS: The task force developed 6 overarching statements and 24 specific points to consider relevant to early recognition of HLH/MAS, diagnostic approaches, initial management and monitoring of HLH/MAS. Major themes included the simultaneous need for prompt syndrome recognition, systematic evaluation of underlying contributors, early intervention targeting both hyperinflammation and likely contributors, careful monitoring for progression/complications and expert multidisciplinary assistance. CONCLUSION: These 2022 EULAR/American College of Rheumatology points to consider provide up-to-date guidance, based on the best available published data and expert opinion. They are meant to help guide the initial evaluation, management and monitoring of patients with HLH/MAS in order to halt disease progression and prevent life-threatening immunopathology.


Asunto(s)
Linfohistiocitosis Hemofagocítica , Síndrome de Activación Macrofágica , Médicos , Adulto , Niño , Humanos , Linfohistiocitosis Hemofagocítica/diagnóstico , Linfohistiocitosis Hemofagocítica/terapia , Síndrome de Activación Macrofágica/diagnóstico , Síndrome de Activación Macrofágica/etiología , Síndrome de Activación Macrofágica/terapia , Consenso , Comités Consultivos
8.
Ann Rheum Dis ; 82(10): 1271-1285, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37487610

RESUMEN

OBJECTIVE: Haemophagocytic lymphohistiocytosis (HLH) and macrophage activation syndrome (MAS) are life-threatening systemic hyperinflammatory syndromes that can develop in most inflammatory contexts. They can progress rapidly, and early identification and management are critical for preventing organ failure and mortality. This effort aimed to develop evidence-based and consensus-based points to consider to assist clinicians in optimising decision-making in the early stages of diagnosis, treatment and monitoring of HLH/MAS. METHODS: A multinational, multidisciplinary task force of physician experts, including adult and paediatric rheumatologists, haematologist/oncologists, immunologists, infectious disease specialists, intensivists, allied healthcare professionals and patients/parents, formulated relevant research questions and conducted a systematic literature review (SLR). Delphi methodology, informed by SLR results and questionnaires of experts, was used to generate statements aimed at assisting early decision-making and optimising the initial care of patients with HLH/MAS. RESULTS: The task force developed 6 overarching statements and 24 specific points to consider relevant to early recognition of HLH/MAS, diagnostic approaches, initial management and monitoring of HLH/MAS. Major themes included the simultaneous need for prompt syndrome recognition, systematic evaluation of underlying contributors, early intervention targeting both hyperinflammation and likely contributors, careful monitoring for progression/complications and expert multidisciplinary assistance. CONCLUSION: These 2022 EULAR/American College of Rheumatology points to consider provide up-to-date guidance, based on the best available published data and expert opinion. They are meant to help guide the initial evaluation, management and monitoring of patients with HLH/MAS in order to halt disease progression and prevent life-threatening immunopathology.


Asunto(s)
Linfohistiocitosis Hemofagocítica , Síndrome de Activación Macrofágica , Reumatología , Niño , Adulto , Humanos , Estados Unidos , Linfohistiocitosis Hemofagocítica/diagnóstico , Linfohistiocitosis Hemofagocítica/terapia , Linfohistiocitosis Hemofagocítica/etiología , Síndrome de Activación Macrofágica/diagnóstico , Síndrome de Activación Macrofágica/etiología , Síndrome de Activación Macrofágica/terapia , Consenso
9.
Arthritis Care Res (Hoboken) ; 75(10): 2063-2072, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37038961

RESUMEN

OBJECTIVE: Although interleukin-1 (IL-1)/IL-6 inhibitors are effective therapies for systemic juvenile idiopathic arthritis (JIA), some patients develop eosinophilia and lung disease during treatment. This study was undertaken to retrospectively evaluate incidence and risk factors for eosinophilia and describe lung disease outcomes in IL-1/IL-6 inhibitor-exposed patients with systemic JIA. METHODS: Among JIA patients at our institution exposed to interleukin-1 (IL-1)/IL-6 inhibitors (1995-2022), we compared incidence rate of eosinophilia in systemic JIA compared to other JIA, stratified by medication class (IL-1/IL-6 inhibitors, other cytokine inhibitors, methotrexate). We used Cox models to identify predictors of eosinophilia during IL-1/IL-6 inhibitor use and summarized treatment changes and outcomes after eosinophilia, including lung disease. HLA typing was performed on a clinical or research basis. RESULTS: There were 264 new medication exposures in 75 patients with systemic JIA and 41 patients with other JIA. A total of 49% of patients with systemic JIA with HLA typing (n = 45) were positive for HLA-DRB1*15 alleles. Eosinophilia was common during IL-1/IL-6 inhibitor use and did not differ by systemic JIA compared to other JIA (0.08 and 0.07 per person-year, respectively; P = 0.30). Among systemic JIA patients, pretreatment macrophage activation syndrome (MAS) was associated with a higher rate of subsequent eosinophilia on biologic therapy (unadjusted hazard ratio 3.2 [95% confidence interval 1.2-8.3]). A total of 4 of 5 patients who switched therapy within 10 weeks of eosinophilia experienced disease flare compared to none of the patients who continued the original therapy. A total of 8 of 25 patients with pulmonary evaluations had lung disease, and all had severe manifestations of systemic JIA (MAS, intensive care unit stay). One death was attributed to systemic JIA-lung disease. CONCLUSION: Eosinophilia is common in JIA patients using IL-1/IL-6 inhibitors. Severe disease may be associated with eosinophilia and lung disease in systemic JIA.


Asunto(s)
Artritis Juvenil , Productos Biológicos , Eosinofilia , Enfermedades Pulmonares , Humanos , Niño , Artritis Juvenil/diagnóstico , Artritis Juvenil/tratamiento farmacológico , Artritis Juvenil/epidemiología , Incidencia , Estudios Retrospectivos , Inhibidores de la Interleucina-6 , Eosinofilia/inducido químicamente , Eosinofilia/diagnóstico , Eosinofilia/epidemiología , Factores de Riesgo , Interleucina-1 , Productos Biológicos/uso terapéutico
10.
J Clin Invest ; 133(1)2023 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-36282598

RESUMEN

Multisystem inflammatory syndrome in children (MIS-C) evolves in some pediatric patients following acute infection with SARS-CoV-2 by hitherto unknown mechanisms. Whereas acute-COVID-19 severity and outcomes were previously correlated with Notch4 expression on Tregs, here, we show that Tregs in MIS-C were destabilized through a Notch1-dependent mechanism. Genetic analysis revealed that patients with MIS-C had enrichment of rare deleterious variants affecting inflammation and autoimmunity pathways, including dominant-negative mutations in the Notch1 regulators NUMB and NUMBL leading to Notch1 upregulation. Notch1 signaling in Tregs induced CD22, leading to their destabilization in a mTORC1-dependent manner and to the promotion of systemic inflammation. These results identify a Notch1/CD22 signaling axis that disrupts Treg function in MIS-C and point to distinct immune checkpoints controlled by individual Treg Notch receptors that shape the inflammatory outcome in SARS-CoV-2 infection.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Niño , COVID-19/genética , Linfocitos T Reguladores , Inflamación/genética , Receptor Notch1/genética , Lectina 2 Similar a Ig de Unión al Ácido Siálico
11.
J Rheumatol ; 50(7): 968-969, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36379573
12.
Nat Commun ; 13(1): 6915, 2022 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-36443301

RESUMEN

Still's disease is a severe inflammatory syndrome characterized by fever, skin rash and arthritis affecting children and adults. Patients with Still's disease may also develop macrophage activation syndrome, a potentially fatal complication of immune dysregulation resulting in cytokine storm. Here we show that mTORC1 (mechanistic target of rapamycin complex 1) underpins the pathology of Still's disease and macrophage activation syndrome. Single-cell RNA sequencing in a murine model of Still's disease shows preferential activation of mTORC1 in monocytes; both mTOR inhibition and monocyte depletion attenuate disease severity. Transcriptomic data from patients with Still's disease suggest decreased expression of the mTORC1 inhibitors TSC1/TSC2 and an mTORC1 gene signature that strongly correlates with disease activity and treatment response. Unrestricted activation of mTORC1 by Tsc2 deletion in mice is sufficient to trigger a Still's disease-like syndrome, including both inflammatory arthritis and macrophage activation syndrome with hemophagocytosis, a cellular manifestation that is reproduced in human monocytes by CRISPR/Cas-mediated deletion of TSC2. Consistent with this observation, hemophagocytic histiocytes from patients with macrophage activation syndrome display prominent mTORC1 activity. Our study suggests a mechanistic link of mTORC1 to inflammation that connects the pathogenesis of Still's disease and macrophage activation syndrome.


Asunto(s)
Artritis Juvenil , Linfohistiocitosis Hemofagocítica , Síndrome de Activación Macrofágica , Adulto , Niño , Humanos , Ratones , Animales , Síndrome de Activación Macrofágica/genética , Diana Mecanicista del Complejo 1 de la Rapamicina/genética , Linfohistiocitosis Hemofagocítica/genética , Modelos Teóricos
13.
Clin Immunol ; 243: 109106, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36049601

RESUMEN

Multisystem inflammatory syndrome in children (MIS-C) is a severe complication of SARS-CoV-2 infections that occurs in the pediatric population. We sought to characterize T cell responses in MIS-C compared to COVID-19 and pediatric hyperinflammatory syndromes. MIS-C was distinct from COVID-19 and hyperinflammatory syndromes due to an expansion of T cells expressing TRBV11-2 that was not associated with HLA genotype. Children diagnosed with MIS-C, but who were negative for SARS-CoV-2 by PCR and serology, did not display Vß skewing. There was no difference in the proportion of T cells that became activated after stimulation with SARS-CoV-2 peptides in children with MIS-C compared to convalescent COVID-19. The frequency of SARS-CoV-2-specific TCRs and the antigens recognized by these TCRs were comparable in MIS-C and COVID-19. Expansion of Vß11-2+ T cells was a specific biomarker of MIS-C patients with laboratory confirmed SARS-CoV-2 infections. Children with MIS-C had robust antigen-specific T cell responses to SARS-CoV-2.


Asunto(s)
COVID-19 , Enfermedades del Tejido Conjuntivo , COVID-19/complicaciones , Niño , Humanos , SARS-CoV-2 , Síndrome de Respuesta Inflamatoria Sistémica , Linfocitos T
14.
J Rheumatol ; 49(9): 1042-1051, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35840156

RESUMEN

OBJECTIVE: To compare clinical outcomes in children with hemophagocytic lymphohistiocytosis (HLH) and macrophage activation syndrome (MAS) who were managed before and after implementation of an evidence-based guideline (EBG). METHODS: A management algorithm for MAS-HLH was developed at our institution based on literature review, expert opinion, and consensus building across multiple pediatric subspecialties. An electronic medical record search retrospectively identified hospitalized patients with MAS-HLH in the pre-EBG (October 15, 2015, to December 4, 2017) and post-EBG (January 1, 2018, to January 21, 2020) time periods. Predetermined outcome metrics were evaluated in the 2 cohorts. RESULTS: After the EBG launch, 57 children were identified by house staff as potential patients with MAS-HLH, and rheumatology was consulted for management. Ultimately, 17 patients were diagnosed with MAS-HLH by the treating team. Of these, 59% met HLH 2004 criteria, and 94% met 2016 classification criteria for MAS complicating systemic juvenile idiopathic arthritis. There was a statistically significant reduction in mortality from 50% before implementation of the EBG to 6% in the post-EBG cohort (P = 0.02). There was a significant improvement in time to 50% reduction in C-reactive protein level in the post-EBG vs pre-EBG cohorts (log-rank P < 0.01). There were trends toward faster time to MAS-HLH diagnosis, faster initiation of immunosuppressive therapy, shorter length of hospital stay, and more rapid normalization of MAS-HLH-related biomarkers in the patients post-EBG. CONCLUSION: While the observed improvements may be partially attributed to advances in treatment of MAS-HLH that have accumulated over time, this analysis also suggests that a multidisciplinary treatment pathway for MAS-HLH contributed meaningfully to favorable patient outcomes.


Asunto(s)
Linfohistiocitosis Hemofagocítica , Síndrome de Activación Macrofágica , Humanos , Niño , Síndrome de Activación Macrofágica/tratamiento farmacológico , Síndrome de Activación Macrofágica/diagnóstico , Linfohistiocitosis Hemofagocítica/terapia , Estudios Retrospectivos , Proteína C-Reactiva , Biomarcadores
16.
Pediatr Pulmonol ; 57(7): 1577-1587, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35426264

RESUMEN

In recent years, a growing number of monogenic disorders have been described that are characterized by immune dysregulation. A subset of these "primary immune regulatory disorders" can cause severe interstitial lung disease, often recognized in late childhood or adolescence. Patients presenting to pulmonary clinic may have long and complex medical histories, but lack a unifying genetic diagnosis. It is crucial for pulmonologists to recognize features suggestive of multisystem immune dysregulation and to initiate genetic workup, since targeted therapies based on underlying genetics may halt or even reverse pulmonary disease progression. Through such an approach, our center has been able to diagnose and treat a cohort of patients with interstitial lung disease from gene defects that affect immune regulation. Here we present representative cases related to pathogenic variants in three distinct pathways and summarize disease manifestations and treatment approaches. We conclude with a discussion of our perspective on the outstanding challenges for diagnosing and managing these complex life-threatening and chronic disorders.


Asunto(s)
Enfermedades Pulmonares Intersticiales , Adolescente , Niño , Humanos , Pulmón , Enfermedades Pulmonares Intersticiales/diagnóstico , Enfermedades Pulmonares Intersticiales/genética
17.
Nature ; 606(7914): 576-584, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35385861

RESUMEN

SARS-CoV-2 can cause acute respiratory distress and death in some patients1. Although severe COVID-19 is linked to substantial inflammation, how SARS-CoV-2 triggers inflammation is not clear2. Monocytes and macrophages are sentinel cells that sense invasive infection to form inflammasomes that activate caspase-1 and gasdermin D, leading to inflammatory death (pyroptosis) and the release of potent inflammatory mediators3. Here we show that about 6% of blood monocytes of patients with COVID-19 are infected with SARS-CoV-2. Monocyte infection depends on the uptake of antibody-opsonized virus by Fcγ receptors. The plasma of vaccine recipients does not promote antibody-dependent monocyte infection. SARS-CoV-2 begins to replicate in monocytes, but infection is aborted, and infectious virus is not detected in the supernatants of cultures of infected monocytes. Instead, infected cells undergo pyroptosis mediated by activation of NLRP3 and AIM2 inflammasomes, caspase-1 and gasdermin D. Moreover, tissue-resident macrophages, but not infected epithelial and endothelial cells, from lung autopsies from patients with COVID-19 have activated inflammasomes. Taken together, these findings suggest that antibody-mediated SARS-CoV-2 uptake by monocytes and macrophages triggers inflammatory cell death that aborts the production of infectious virus but causes systemic inflammation that contributes to COVID-19 pathogenesis.


Asunto(s)
COVID-19 , Inflamación , Monocitos , Receptores de IgG , SARS-CoV-2 , COVID-19/virología , Caspasa 1/metabolismo , Proteínas de Unión al ADN , Humanos , Inflamasomas/metabolismo , Inflamación/metabolismo , Inflamación/virología , Monocitos/metabolismo , Monocitos/virología , Proteína con Dominio Pirina 3 de la Familia NLR , Proteínas de Unión a Fosfato , Proteínas Citotóxicas Formadoras de Poros , Receptores de IgG/metabolismo
18.
Arthritis Rheumatol ; 74(4): e1-e20, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35118829

RESUMEN

OBJECTIVE: To provide guidance on the management of Multisystem Inflammatory Syndrome in Children (MIS-C), a condition characterized by fever, inflammation, and multiorgan dysfunction that manifests late in the course of SARS-CoV-2 infection. Recommendations are also provided for children with hyperinflammation during COVID-19, the acute, infectious phase of SARS-CoV-2 infection. METHODS: The Task Force is composed of 9 pediatric rheumatologists and 2 adult rheumatologists, 2 pediatric cardiologists, 2 pediatric infectious disease specialists, and 1 pediatric critical care physician. Preliminary statements addressing clinical questions related to MIS-C and hyperinflammation in COVID-19 were developed based on evidence reports. Consensus was built through a modified Delphi process that involved anonymous voting and webinar discussion. A 9-point scale was used to determine the appropriateness of each statement (median scores of 1-3 for inappropriate, 4-6 for uncertain, and 7-9 for appropriate). Consensus was rated as low, moderate, or high based on dispersion of the votes. Approved guidance statements were those that were classified as appropriate with moderate or high levels of consensus, which were prespecified before voting. RESULTS: The guidance was approved in June 2020 and updated in November 2020 and October 2021, and consists of 41 final guidance statements accompanied by flow diagrams depicting the diagnostic pathway for MIS-C and recommendations for initial immunomodulatory treatment of MIS-C. CONCLUSION: Our understanding of SARS-CoV-2-related syndromes in the pediatric population continues to evolve. This guidance document reflects currently available evidence coupled with expert opinion, and will be revised as further evidence becomes available.


Asunto(s)
COVID-19 , Reumatología , Adulto , COVID-19/complicaciones , Niño , Humanos , SARS-CoV-2 , Síndrome de Respuesta Inflamatoria Sistémica/terapia , Estados Unidos
19.
Ann Rheum Dis ; 81(6): 805-814, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35168946

RESUMEN

OBJECTIVE: Neutrophils are typically the most abundant leucocyte in arthritic synovial fluid. We sought to understand changes that occur in neutrophils as they migrate from blood to joint. METHODS: We performed RNA sequencing of neutrophils from healthy human blood, arthritic blood and arthritic synovial fluid, comparing transcriptional signatures with those from murine K/BxN serum transfer arthritis. We employed mass cytometry to quantify protein expression and sought to reproduce the synovial fluid phenotype ex vivo in cultured healthy blood neutrophils. RESULTS: Blood neutrophils from healthy donors and patients with active arthritis showed largely similar transcriptional signatures. By contrast, synovial fluid neutrophils exhibited more than 1600 differentially expressed genes. Gene signatures identified a prominent response to interferon gamma (IFN-γ), as well as to tumour necrosis factor, interleukin-6 and hypoxia, in both humans and mice. Mass cytometry confirmed that healthy and arthritic donor blood neutrophils are largely indistinguishable but revealed a range of neutrophil phenotypes in synovial fluid defined by downregulation of CXCR1 and upregulation of FcγRI, HLA-DR, PD-L1, ICAM-1 and CXCR4. Reproduction of key elements of this signature in cultured blood neutrophils required both IFN-γ and prolonged culture. CONCLUSIONS: Circulating neutrophils from patients with arthritis resemble those from healthy controls, but joint fluid cells exhibit a network of changes, conserved across species, that implicate IFN-γ response and ageing as complementary drivers of the synovial fluid neutrophil phenotype.


Asunto(s)
Artritis , Neutrófilos , Envejecimiento , Animales , Artritis/metabolismo , Humanos , Interferón gamma/metabolismo , Ratones , Neutrófilos/metabolismo , Fenotipo , Líquido Sinovial/metabolismo
20.
Pediatr Rheumatol Online J ; 20(1): 3, 2022 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-35033099

RESUMEN

INTRODUCTION: Juvenile idiopathic arthritis (JIA) is a cluster of autoimmune rheumatic diseases occurring in children 16 years of age or less. While it is well-known that pain may be experienced during inflammatory and non-inflammatory states, much remains ambiguous regarding the molecular mechanisms that may drive JIA pain. Thus, in this pilot study, we explored the variability of the serum proteomes in relation to pain severity in a cohort of JIA patients. METHODS: Serum samples from 15 JIA patients (male and female, 12.7 ± 2.8 years of age) were assessed using liquid chromatography/mass spectrometry (LC/MS). Correlation analyses were performed to determine the relationships among protein levels and self-reported clinical pain severity. Additionally, how the expression of pain-associated proteins related to markers of inflammation (Erythrocyte Sedimentation Rate (ESR)) or morphological properties of the central nervous system (subcortical volume and cortical thickness) implicated in JIA were also evaluated. RESULTS: 306 proteins were identified in the JIA cohort of which 14 were significantly (p < 0.05) associated with clinical pain severity. Functional properties of the identified pain-associated proteins included but were not limited to humoral immunity (IGLV3.9), inflammatory response (PRG4) and angiogenesis (ANG). Associations among pain-associated proteins and ESR (IGHV3.9, PRG4, CST3, VWF, ALB), as well as caudate nucleus volume (BTD, AGT, IGHV3.74) and insular cortex thickness (BTD, LGALS3BP) were also observed. CONCLUSIONS: The current proteomic findings suggest both inflammatory- and non-inflammatory mediated mechanisms as potential factors associated with JIA pain. Validation of these preliminary observations using larger patient cohorts and a longitudinal study design may further point to novel serologic markers of pain in JIA.


Asunto(s)
Artritis Juvenil/sangre , Biomarcadores/sangre , Inflamación/sangre , Adolescente , Niño , Femenino , Humanos , Masculino , Dimensión del Dolor , Proyectos Piloto , Proteómica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...